A hidden Markov model for haplotype inference for present-absent data of clustered genes using identified haplotypes and haplotype patterns
نویسندگان
چکیده
The majority of killer cell immunoglobin-like receptor (KIR) genes are detected as either present or absent using locus-specific genotyping technology. Ambiguity arises from the presence of a specific KIR gene since the exact copy number (one or two) of that gene is unknown. Therefore, haplotype inference for these genes is becoming more challenging due to such large portion of missing information. Meantime, many haplotypes and partial haplotype patterns have been previously identified due to tight linkage disequilibrium (LD) among these clustered genes thus can be incorporated to facilitate haplotype inference. In this paper, we developed a hidden Markov model (HMM) based method that can incorporate identified haplotypes or partial haplotype patterns for haplotype inference from present-absent data of clustered genes (e.g., KIR genes). We compared its performance with an expectation maximization (EM) based method previously developed in terms of haplotype assignments and haplotype frequency estimation through extensive simulations for KIR genes. The simulation results showed that the new HMM based method outperformed the previous method when some incorrect haplotypes were included as identified haplotypes and/or the standard deviation of haplotype frequencies were small. We also compared the performance of our method with two methods that do not use previously identified haplotypes and haplotype patterns, including an EM based method, HPALORE, and a HMM based method, MaCH. Our simulation results showed that the incorporation of identified haplotypes and partial haplotype patterns can improve accuracy for haplotype inference. The new software package HaploHMM is available and can be downloaded at http://www.soph.uab.edu/ssg/files/People/KZhang/HaploHMM/haplohmm-index.html.
منابع مشابه
Haplotype inference for present-absent genotype data using previously identified haplotypes and haplotype patterns
MOTIVATION Killer immunoglobulin-like receptor (KIR) genes vary considerably in their presence or absence on a specific regional haplotype. Because presence or absence of these genes is largely detected using locus-specific genotyping technology, the distinction between homozygosity and hemizygosity is often ambiguous. The performance of methods for haplotype inference (e.g. PL-EM, PHASE) for K...
متن کاملA hidden Markov model for investigating recent positive selection through haplotype structure.
Recent positive selection can increase the frequency of an advantageous mutant rapidly enough that a relatively long ancestral haplotype will be remained intact around it. We present a hidden Markov model (HMM) to identify such haplotype structures. With HMM identified haplotype structures, a population genetic model for the extent of ancestral haplotypes is then adopted for parameter inference...
متن کاملHaplotype Inference Using a Hidden Markov Model with Efficient Markov Chain Sampling
Knowledge of haplotypes is useful for understanding block structures of the genome and finding genes associated with disease. Direct measurement of haplotypes in the absence of family data is presently impractical. Hence several methods have been developed previously for reconstructing haplotypes from population data. In this thesis, a new population-based method is developed using a Hidden Mar...
متن کاملP-236: Haplotype Analysis of The H2B.W Gene in Severe Oligospermic and Azoospermic Infertile Men Referred to Royan Institute
Background: Recent studies demonstrated the multifactorial and chronic nature of male infertility, including mutations of some known spermatogenesis-related genes. The H2B family, member W (H2B.W) gene is one of the testis specific histone variant genes that encodes a sperm telomere-binding protein, required for reorganization and integration of sperm chromosomes. The objective of the present s...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کامل